数据管理解决方案
这里我们不必要了解采集的数据量如何呈指数级增长。对于交通行业来说,采集的数据只会随着汽车朝5级自动驾驶方向发展而不断增加。来自雷达、激光雷达和相机等传感器的数据将整合在一起,以了解汽车周边的环境。生物识别传感器的数据将有助于了解驾驶员的状态和健康状况。汽车将基于这些数据自动启动车道变换辅助系统和自适应巡航控制系统。而且更令人兴奋的是,AI的应用也即将在汽车领域全面爆发。
对于测试工程师来说,由于采集的数据量庞大、验证采集数据的步骤增加以及实时分析这些大型数据集的需求,数据问题将会加剧。最近发生的特斯拉死机就是即时数据处理挑战的一个例子。正确做出决策无疑会带来无限的潜在影响。
我们来设想一种情况。系统发生崩溃。系统会分析汽车上传感器的数据并识别自动驾驶算法中的错误。
如果用于测试这些系统的数据与用于监控和评估这些系统的数据相同,那么接下来的步骤可能是。..。..
错误被修复并自动更新到存在该错误的车上。相同的数据会在验证系统时生成新的测试参数,以确保不会重复发生错误。
这种情况是未来十年我们对自动驾驶算法、人工智能和物联网的预期。但是,目前这种情况并发生,因为尽管我们加载的数据越来越多,但并没有真正对这些数据进行分析。
这一问题的关键在于不仅可能,而且能够轻松存储、共享、查找和分析测量数据的企业数据管理解决方案。虽然这极具挑战性,还是有一些汽车公司采取了相应的解决方案,并取得了显著的成效。丰田将分析数据所需的工时减少了50%;道依茨将数据分析时间减少了90%。捷豹路虎将其测试数据的百分比从10%提高到了95%,而且时间缩短了20倍。这些案例的共同点在哪里呢?答案就是标准化的数据管理和分析企业方案。