该芯片最初设计为在功率受限的设备中支持心电图(ECG)和语音处理。由于其通用架构具有全新的数字硬件。在设计上,还可以轻松地对其进行重新配置,以处理各种其他传感输入信号,例如声纳,雷达和激光雷达数据。 与模拟SNN相反,imec的事件驱动数字设计使该芯片能够像神经网络仿真工具所预测的那样精确且重复地运行。
imec描述了一个涉及无人机行业的用例,该应用甚至比汽车行业还要多,它与受约束的设备(例如容量有限的电池)一起工作,这些设备需要对环境的变化迅速做出反应,以便对接近的障碍物做出适当的反应。 “我们这款新芯片的旗舰用例包括为无人机创建低延迟、低功耗的防撞系统。在靠近雷达传感器的地方进行处理,我们的芯片可使雷达传感系统更快、更准确地区分正在接近的物体。
反过来,这将使无人机几乎可以立即对潜在的危险情况做出反应。” Ocket解释说。“目前,我们正在探索一种方案,该方案以自主无人机为基础,这些无人机依靠其车载摄像头和雷达传感器系统进行仓库内导航,在执行复杂任务时与墙壁和架子保持安全距离。这项技术还可以用于许多其他用例,从机器人方案到自动导引车(AGV)的部署,甚至健康监控。”
“该芯片可以满足业界对真正从数据中学习并实现个性化AI的超低功耗神经网络的需求。在创建过程中,我们召集了来自imec各个领域的专家,从培训算法的开发和以神经科学为基础的尖峰神经网络架构到生物医学和雷达信号处理,以及超低功耗数字芯片设计。imec做了大量研究工作,”imec物联网认知感知程序总监Kathleen Philips 总结道。