2、 利用HOG特征实现人头检测
Dalal等人首先将HOG特征用于静态图像中的行人检测,其主要思想是利用局部区域的梯度方向直方图来描述目标特征。本文用HOG特征结合支撑向量机SVM(Support Vector Machine)分类器进行头部检测,分为SVM分类器训练和人头检测两个阶段。
2.1 HOG特征提取
提取目标的HOG特征步骤如下:首先按照式(1)和式(2)计算灰度图像的梯度幅值和梯度方向。
其中,Gx、Gy分别是(x,y)的水平和竖直梯度,梯度的方向设定为0~?仔。本文梯度的方向反映该像素点周围的灰度变化的方向,梯度的幅度反映灰度变化的大小。
然后进行子块单元的划分和方向直方图统计。如图3(a)所示,将图像划分为若干个图像块(BLOCK),每个块划分为若干个正方形图像单元(CELL),图像单元的边长记为CELLSIZE。图3(a)中CELL的大小为8×8个像素,即CELLSIZE=8;一个BLOCK包含2×2个图像单元CELLNUM=4。以一个图像单元为单位,进行方向梯度直方图的统计。将梯度方向划分为BIN个区间,对于各个区间的梯度相加,形成一个BIN维的向量来描述一个图像单元。最后生成图像的Hog描述子,对于每一个BLOCK对应的BIN×CELLNUM维向量可以根据实际需要按式(3)进行标准化: