专用硬件来处理真正的人工智能算法
VPU使用灵活,但许多常见的神经网络需要的大量带宽通道对标准处理器指令集提出了挑战。因此,必须有专门的硬件来处理这些复杂的计算。
例如NeuPro AI处理器包括专用的引擎处理矩阵乘法、完全连接层、激活层和汇聚层。这种先进的专用AI引擎结合完全可编程工作的NeuPro VPU,可以支持所有其它层类型和神经网络拓扑。
这些模块之间的直接连接允许数据无缝交换,不再需要写入内存。此外,优化的DDR带宽和先进的DMA控制器采用动态流水线处理,可以进一步提高速度,同时降低功耗。
明天未知的人工智能算法
人工智能仍然是一个新兴且快速发展的领域。神经网络的应用场景快速增加,例如目标识别、语音和声音分析、5G通信等。保持一种适应性的解决方案,满足未来趋势是确保芯片设计成功唯一途径。
因此,满足现有算法的专用硬件肯定是不够的,还必须搭配一个完全可编程的平台。在算法一直不断改进的情况下,计算机模拟仿真是基于实际结果进行决策的关键工具,并且减少了上市时间。
CDNN PC仿真包允许SoC设计人员在开发真实硬件之前,就可以使用PC环境权衡自己的设计。
另一个满足未来需求的宝贵特征是可扩展性。NeuPro AI产品家族可以应用于广泛的目标市场,从轻量型的物联网和可穿戴设备(2 TOPs)到高性能的行业监控和自动驾驶应用(12.5 TOPs)。
在移动端实现旗舰AI处理器的竞赛已经开始。 许多人快速赶上了这一趋势,使用人工智能作为自己产品的卖点,但并不是所有产品里都具备相同的智能水平。
如果想要创建一个在不断发展的人工智能领域保持“聪明”的智能设备,应该确保在选择AI处理器时,检查上述提到的所有特性。
来源:中国电子网
关于嵌入式技术就介绍完了,您有什么想法可以联系小编。