建模是智能制造与传统制造最大区别。智能制造系统区别于传统制造系统的最重要的要素在于第6个M:建模(Modeling—数据和知识建模,包括监测、预测、优化和防范等),并通过这第6个M来驱动其他5个传统要素,从而解决和避免制造系统的问题,消除系统中的不确定性。
因此,智能制造运行的逻辑是:发生问题→模型(或在人的帮助下)分析问题→模型调整5个要素→解决问题→模型积累经验,并分析问题的根源→模型调整5个要素→避免问题,工艺模型担任大脑的角色,成为整个制造系统的核心。
数字孪生技术的背后是数字模型
数字孪生体现的是数字模型和实体的双向进化过程。数字孪生是指充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程。
在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。举例来讲,导航软件中城市的实体道路和软件中的虚拟道路就是“数字孪生”。
数字孪生体现了软件、硬件、和物联网回馈的机制,运行实体的数据是数字孪生的营养液输送线,反过来,很多模拟或指令信息可以从数字孪生输送到实体,以达到诊断或者预防的目的,是一个双向进化的过程。
通过产品数字孪生体的定义可以看出:
1)产品数字孪生体是产品物理实体在信息空间中集成的仿真模型,是产品物理实体的全生命周期数字化档案,并实现产品全生命周期数据和全价值链数据的统一集成管理;
2)产品数字孪生体是通过与产品物理实体之间不断进行数据和信息交互而完善的;
3)产品数字孪生体的最终表现形式是产品物理实体的完整和精确数字化描述;
4)产品数字孪生体可用来模拟、监控、诊断、预测和控制产品物理实体在现实物理环境中的形成过程和状态。
在这其中,数据流通与交换起到十分重要的作用,其为产品数字孪生体提供访问、整合和转换能力,其目标是贯通产品生命周期和价值链,实现全面追溯、双向共享/交互信息、价值链协同。
数字孪生是CPS 关键技术。CPS 通过构筑信息空间与物理空间数据交互的闭环通道,能够实现信息虚体与物理实体之间的交互联动。数字孪生体的出现为实现CPS 提供了清晰的思路、方法及实施途径。