任何数据的收集和使用都是昂贵的,工业数据也不例外。然而,随着信息技术、电子与数学技术、传感器、物联网等技术的发展,一批智能化、高精度、长时间导航、高性价比、微型传感器应运而生。在移动数据通信的支持下,以物联网为代表的新一代网络技术可以随时随地采集和传输数据。以云计算为代表的新型数据处理基础设施大大降低了工业数据处理的技术门槛和成本支出。以工业领域的SCADA系统为例,每个电网和化工企业在传统模式下都需要建立一套成本超过1000万元的SCADA系统。如果采用云架构模型,成本将降低70%以上。

社会需求的变化是最大的推动力。在商品剩余经济时代,以个性化为代表的消费文化使工业企业的产出最大程度地满足个体需求。从服装定制,车辆匹配,到T恤印花和个性化教育。

有两种方法可以满足个性化需求。以服装定制为例,通过教师的尺、手、眼和经验,确定服装的裁剪和布局。这种模式称为仿真模式,难以保证个性化定制的效率和质量、耗时和成本。另一种方法是数字模式,即通过开发一套数据采集手段。前台客户代表测量并收集用户的数字数据,然后将数据发送回总部。结合原材料数据,将需求分解为生产过程动作。最后,生产出符合定制要求的服装。

当然,工厂也会聘请高级硕士。他们的主要工作不是面对个别客户的客制化需求,而是研究更好的生产流程,控制数据和流程分解。在这种模式下,效率和质量得到保证,效率随着生产线的扩大而线性提高,一批专家组继续研究和提高工艺能力。定制生产成本将大大降低。从发展趋势的角度看,后一种数字模式的个性化生产将是未来的选择。

国家政策是重要影响因素。德国工业已经完成了工业自动化的过程,在自动化的基础上,以工业数据为基础,引入云计算和人工智能技术来提高工业的智能化水平,以满足社会对大规模定制生产的需求。美国拥有强大的云计算、互联网和数据处理能力。在此基础上,提出了一种通过大数据将单个设备、一条生产线和一家工厂的数据连接起来的工业互联网策略。挖掘工业服务业在诊断、预测、售后服务等方面的价值。

与德国和美国相比,中国处于工业自动化和云计算领域的开发阶段,因此建议中国制造2025计划将通过工业化和信息集成的方式集成工业化和信息集成。制定一系列关键项目和推进计划。

工业大数据产业现状

工业是国民经济的基础和支柱,也是一国经济实力和竞争力的重要标志。

近年来,工业大数据作为我国“智能制造”和“工业互联网”的关键技术支撑以及两化融合的重要基础备受关注。党中央、国务院出台了一系列“大数据”“两化融合”“互联网与制造业融合”等综合性政策与指示,其中对工业大数据发展提出了明确的要求,全面指导我国工业大数据技术发展、产业应用及其标准化进程。

  • UC3846控制芯片工作原理控制图 逆变焊机原理与用途
  • 数字万用表电阻档测试二极管正反向没有阻值(使用万用表测量二极管的正向电阻,为什么各档)
  • 学单片机需要学数电模电吗(学单片机要先学数电模电吗)
  • 电工怎么选择适合自己用的万用表(电工初学者买什么样的万用表好)
  • 单片机需要同时运行多个任务怎么办(单片机怎么同时执行多个任务)
  • 电机保护的方案取决于负载的机械特性
  • 绝缘电阻表正负搭接不复零位是怎么回事
  • 短路怎么用万用表查