什么是微分电路和积分电路
1、RC微分电路
如图1所示,电阻R和电容C串联后接入输入信号VI,由电阻R输出信号VO,当RC 数值与输入方波宽度tW之间满足:RC
在t=t1时,VI由0→Vm,因电容上电压不能突变(来不及充电,相当于短路,VC=0),输入电压VI全降在电阻R上,即VO=VR=VI=V m 。随后(t》t1),电容C的电压按指数规律快速充电上升,输出电压随之按指数规律下降(因VO=VI-VC=Vm-VC),经过大约3τ(τ=R × C)时,VCVm,VO0,τ(RC)的值愈小,此过程愈快,输出正脉冲愈窄。
t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负的电压V m开始按指数规律经电阻R放电,刚开始,电容C来不及放电,他的左端(正电)接地,所以VO=-Vm,之后VO随电容的放电也按指数规律减小,同样经过大约3τ后,放电完毕,输出一个负脉冲。
只要脉冲宽度tW>(5~10)τ,在tW时间内,电容C已完成充电或放电(约需3 τ),输出端就能输出正负尖脉冲,才能成为微分电路,因而电路的充放电时间常数τ必须满足:τ<(1/5~1/10)tW,这是微分电路的必要条件。
由于输出波形VO与输入波形VI之间恰好符合微分运算的结果[VO=RC( dVI/dt)],即输出波形是取输入波形的变化部分。如果将VI按傅里叶级展开,进行微分运算的结果,也将是VO的表达式。他主要用于对复杂波形的分离和分频器,如从电视信号的复合同步脉冲分离出行同步脉冲和时钟的倍频应用。
2、RC耦合电路
图1中,如果电路时间常数τ(RC)>>tW,他将变成一个RC耦合电路。输出波形与输入波形一样。如图3所示。
(1)在t=t1时,第一个方波到来,VI由0→Vm,因电容电压不能突变(VC=0),VO=VR=VI=Vm。
(2)t1>tW,电容C缓慢充电,VC缓慢上升为左正右负,V O=VR=VI-VC,VO缓慢下降。
(3)t=t2时,VO由Vm→0,相当于输入端被短路,此时,VC已充有左正右负电压Δ[Δ=(VI/τ)×tW],经电阻R非常缓慢地放电。
(4)t=t3时,因电容还来不及放完电,积累了一定电荷,第二个方波到来,电阻上的电压就不是Vm,而是VR=Vm-VC(VC≠0),这样第二个输出方波比第一个输出方波略微往下平移,第三个输出方波比第二个输出方波又略微往下平移,…,最后,当输出波形的正半周“面积”与负半周“面积”相等时,就达到了稳定状态。也就是电容在一个周期内充得的电荷与放掉的电荷相等时,输出波形就稳定不再平移,电容上的平均电压等于输入信号中电压的直流分量(利用C的隔直作用),把输入信号往下平移这个直流分量,便得到输出波形,起到传送输入信号的交流成分,因此是一个耦合电路。
以上的微分电路与耦合电路,在电路形式上是一样的,关键是tW与τ的关系,下面比较一下τ与方波周期T(T》tW)不同时的结果,如图4所示。在这三种情形中,由于电容C的隔直作用,输出波形都是一个周期内正、负“面积”相等,即其平均值为0,不再含有直流成份。
①当τ>>T时,电容C的充放电非常缓慢,其输出波形近似理想方波,是理想耦合电路。
②当τ=T时,电容C有一定的充放电,其输出波形的平顶部分有一定的下降或上升,不是 理想方波。
③当τ