PID算法通俗理解_PID算法的通俗讲法
首先帮大家解决一下什么是PID调节,为什么就要这样的疑惑。
PID是比例,积分,微分的英文单词的首字母的简称。
下面举个例子说明一下PID,让大家有个感官的认识,。
一个人闭眼走路,假设他知道自己离目的地有100米远,那么他就可以以每秒一米一步这样的速度走向目的地,100米刚刚好是100步,这是一个非常理想化的现象。假设他不知道目的地有多远,目的地可能是1000米也有可能是10000米,他用每秒每步3米得速度向前,很不巧的是这个目的地在80米处,他走了26步时刚刚好差2米,走27步有刚刚好又多出1米,这就是所谓的稳态误差,如果这个人知道目的地在大概15米处得地方,开始这个人以每秒一米一步的速度,走完一步然后目测一下离目的地还有多远,结果发现还剩下大概14米,显然一米一步太慢,因此这个人决定每秒大于一米一步走,得出一条式子,
y=Kp*e(t)
其中y为下一次要每步要走的距离,e(t) 为目测距离,也就是偏差,换句话说就是自己走了的距离跟要走的距离也就是目的地的误差,Kp就是一个常数,假设我们把Kp设置为0.5,
y=Kp*e(t)可以得出y=7;也就是说那个人下一步要以每秒7米得速度走,重复上述的过程,,7+1共走了8米,然后目测一下距离15米处还有多远,还有7米得误差,所以下一步要走3.5米,然后在重复,发现最后会出现一个稳态的误差,也就是多走一步会超出目的地,少走一步又没到目的地。当然这个上述的例子情况非常特殊,大家可能觉得最后那些误差可以忽略,但是实际应用中,肯定没有人走路的那么特殊,按照这种线性比例下去最后得到的误差会非常大,所以就引入了一个积分的概念,积分的数学几何定义是在区间[a, b]里连续的非负曲线与直线x=a,x=b围成的图形的面积。从积分的定义可以得到一个函数
其中Ti为积分时间,e(t)就是误差了。Y就是输出,它是个不定积分,事实上把它融入到上述人走路的例子它是个定积分,从0 到t时刻的误差的对时间的积分,也就是说误差曲线e(t)与时间轴围成的面积,积分时间Ti是一个常量,也就是说是自己规定大小,很明显,由上式得y为e(t)与t所围成的图形的面积的除以Ti的值,Ti越大y越小,Ti越小y越大,大了系统会动荡,所以要慢慢调节系数。
下面是关于积分跟比例的专业阐述:
比例(P)控制
比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分(I)控制
在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。
为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
微分调节就是偏差值的变化率。例如,如果输入偏差值线性变化,则在调节器输出侧叠加一个恒定的调节量。大部分控制系统不需要调节微分时间。因为只有时间滞后的系统才需要附加这个参数。如果画蛇添足加上这个参数反而会使系统的控制受到影响。
举个例子,人去调节窝炉的温度,慢慢调节旋钮,使得温度慢慢变大,要使得温度达到某个固定值,人可以慢慢调节,边看温度边调节,如果开始离这个这目标温度远就快速旋旋钮(比例效果),到最后要使得温度误差小就微调(积分效果),然后实际上温度是有一个惯性在那里,开始你以很快速度调节旋钮的时候温度不会突变,不会一下子就达到稳定值,它慢慢增加到最后,但是不是每个人都是这么有经验,当他看到温度值离目标温度还差这么远,又加快旋转旋钮,最终结果导致实际温度跟目标温度差别非常远,微调也跟本没法调整,最后导致系统的不稳定,但是如果这个人很有经验,他事先知道这个温度是有惯性的,开始它快速旋转旋钮看温度上升率非常高,也就是温度变化非常快,他就放慢旋转速度了,最后结果是准确的把温度调整到最佳(微分效果)。
人可以是这样子,但是计算机可不会这样调节,那么就要通过一个PID得到一个输出值来调节了。
下面是一段关于微分的专业阐述:
控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入 “比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能 够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在 调节过程中的动态特性。
综上所述得到一个一条公式,这个就是模拟PID
下面是关于应用,增量式PID算法。其实PID的算法可以做很深,但没必要,一般入门级的算法已经在很多场合够用了,这里之所以选用增量式PID算法(另外还有位置式PID等等),因为增量式PID算法运算量少,非常适合单片机的应用。
显然要想给单片机运算,就必须是数字量,而上述的PID是模拟PID,我们要将他数字化,离散化。
其中积分在上面说到的,他的几何意义就是求e(t)与时间轴t围成的图形的面积,将这个面积分成T等分 ,T=0到T=1跟e(t)围成的面积加上T=1到T=2跟e(t)围成的面积一直累加……直到T-1到T跟e(t)围成的面积刚好就是整个e(t)与t时间轴围成的面积,刚刚好是e(t)对t的积分,如果T无限大,那么就可以分割成无限个小图形那么这个图形的面积就可以用T[e(1)+e(2)+………+e(T-1)+e(T)]来代替积分效果,而这个T等分就是AD在整个时间轴t中采样的点,显然越快的AD在相同的时间t里面采样的点越多,换句话说就是T更接近无限大。因此积分可以用累和代替。
下面为积分的专业的解释
定义
设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点
a=x0<x1<...<xn-1<xn=b
把区间[a,b]分成n个小区间
[x0,x1],...[xn-1,xn]。
在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,并作出和
如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I,
这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分, 记作
微分用差分代替,先说明一下微分的几何意义
我们可以想象把上图中的f(x)换成e(t),x轴换成t轴,把△x换成△t,当△t非常小的时候曲线MN等价于直线MN,△y就等于dy,所以
可以用Td*[e(t)-e(t-1)]/ △t,同样△t就是采样时间~越小越好。
因此模拟PID离散化得到在k-1时刻的输出
因此得到一个增量
其中的T为采样时间
,如果计算机控制系统采用恒定的采样周期T,一旦确定A、B、C(系数的选取是PID的关键这里不做讨论)
增量式PID控制算法与位置式PID算法相比,计算量小得多,因此在实际中得到广泛的应用。
位置式PID控制算法也可以通过增量式控制算法推出递推计算公式:
就是目前在计算机控制中广泛应用的数字递推PID控制算法。
下面是程序
typedef struct PID
{
intSetPoint; //设定目标 DesiredValue
longSumError; //误差累计
doubleProportion; //比例常数Proportional Const
doubleIntegral; //积分常数 IntegralConst
doubleDerivative; //微分常数Derivative Const
intLastError; //Error[-1]
intPrevError; //Error[-2]
} PID;
static PID sPID;
static PID *sptr = &sPID;
/*========================================================
InitializePID Structure PID参数初始化
=========================================================*/
void IncPIDInit(void)
{
sptr->SumError= 0;
sptr->LastError= 0; //Error[-1]
sptr->PrevError= 0; //Error[-2]
sptr->Proportion= 0; //比例常数Proportional Const
sptr->Integral= 0; //积分常数IntegralConst
sptr->Derivative= 0; //微分常数Derivative Const
sptr->SetPoint= 0;
}
/*================================================== 增量式PID计算部分
===================================================*/
int IncPIDCalc(int NextPoint)
{
registerint iError, iIncpid; //当前误差
iError= sptr->SetPoint - NextPoint; //增量计算
iIncpid= sptr->Proportion * iError //E[k]项
-sptr->Integral * sptr->LastError //E[k-1]项
+sptr->Derivative * sptr->PrevError; //E[k-2]项
//存储误差,用于下次计算
sptr->PrevError= sptr->LastError;
sptr->LastError= iError;
//返回增量值
return(iIncpid);
}