今天小编要和大家分享的是触控感测相关信息,接下来我将从如何解决人脸识别工具的“脸盲”?,腾讯优图 与《科学》杂志联合举办的计算机视觉峰会将这几个方面来介绍。

触控感测相关技术文章如何解决人脸识别工具的“脸盲”?腾讯优图 与《科学》杂志联合举办的计算机视觉峰会将

触控感测相关技术文章如何解决人脸识别工具的“脸盲”?

日前,亚马逊的一款人脸识别工具错误地将28位美国国会议员与罪犯相匹配,这一新闻引发关注。人脸识别工具为何出现这样的错误?其实,机器与人类一样,见到陌生的外国人也会有“脸盲”,只能识别“当地人”,对于来自其他国家/地区的“外地人”识别精度较低,这一问题如何解决呢?

其关键在于让人脸识别工具尽量多地认识全球各地居民的脸,而这一过程却并不容易实现。北京邮电大学教授邓伟洪提到,人脸识别工具研发过程中,使用的训练数据越多、越齐全,精度就会越高。但由于不同国家/地区对公民个人信息的保护,这些信息收集越来越难。没有训练数据就意味着人脸识别工具只认识“熟人”,而对于训练数据中缺失的人群的识别精度较低。

近日,邓伟洪研究团队的一项研究获得新进展,该团队揭示了当前人脸识别算法中普遍存在跨国家/地区识别偏差问题,构建了评价偏差程度的人脸数据集RFW,提出了减小识别偏差的信息最大化自适应神经网络,以改进对目标域的识别能力。

如何解决人脸识别工具的“脸盲”?

人脸识别工具的地域之困

卷积神经网络是人工智能的代表算法之一,具有很强的图像表征学习能力。2012年,深度卷积神经网络在计算机视觉领域兴起,其出现极大地推进了人脸识别的发展,并成为人脸识别领域的主流技术。

目前,全球的人脸识别工具大多根据深度卷积神经网络的技术开发,但该技术的人脸数据的源域基于西方人的面部特征,面对不同的目标域,即不同国家/地区居民的面部信息识别需求往往“力不从心”。

邓伟洪表示,由于缺乏基准测试库,这一领域的研究长期进展缓慢。一款人脸识别工具即使在当地的识别率很高,也难以精准到全球人类。这就造成了人脸识别工具较强的地域性。

  • UC3846控制芯片工作原理控制图 逆变焊机原理与用途
  • 数字万用表电阻档测试二极管正反向没有阻值(使用万用表测量二极管的正向电阻,为什么各档)
  • 学单片机需要学数电模电吗(学单片机要先学数电模电吗)
  • 电工怎么选择适合自己用的万用表(电工初学者买什么样的万用表好)
  • 单片机需要同时运行多个任务怎么办(单片机怎么同时执行多个任务)
  • 电机保护的方案取决于负载的机械特性
  • 绝缘电阻表正负搭接不复零位是怎么回事
  • 短路怎么用万用表查