今天小编要和大家分享的是卡尔曼滤波器计算 卡尔曼滤波器举例,接下来我将从卡尔曼滤波器的计算,卡尔曼滤波器的举例,卡尔曼滤波器的工具函数,这几个方面来介绍。

卡尔曼滤波器计算 卡尔曼滤波器举例

卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

卡尔曼滤波器计算,卡尔曼滤波器举例,

卡尔曼滤波器的计算

首先,引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(LinearStochasticDifferenceequati)来描述:

X(k)=AX(k-1)+BU(k)+W(k)

再加上系统的测量值:

Z(k)=HX(k)+V(k)

上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(WhiteGaussianNoise),他们的covariance分别是Q,R(这里假设不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances来估算系统的最优化输出(类似上一节那个温度的例子)。

首先利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:

X(k|k-1)=AX(k-1|k-1)+BU(k)………..(1)

式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用p表示covariance:

p(k|k-1)=Ap(k-1|k-1)A’+Q………(2)

式(2)中,p(k|k-1)是X(k|k-1)对应的covariance,p(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):

X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))………(3)

其中Kg为卡尔曼增益(KalmanGain):

Kg(k)=p(k|k-1)H’/(Hp(k|k-1)H’+R)………(4)

到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:

p(k|k)=(I-Kg(k)H)p(k|k-1)………(5)

其中I为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,p(k|k)就是式子(2)的p(k-1|k-1)。这样,算法就可以自回归的运算下去。

卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5个基本公式。根据这5个公式,可以很容易的实现计算机的程序。

卡尔曼滤波器的举例

举例子来说明卡尔曼滤波器的工作过程,配以程序模拟结果。

先把房间看成一个系统,然后对这个系统建模。当然,我们见的模型不需要非常地精确。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出:

X(k|k-1)=X(k-1|k-1)………..(6)

式子(2)可以改成:

p(k|k-1)=p(k-1|k-1)+Q………(7)

因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下:

X(k|k)=X(k|k-1)+Kg(k)(Z(k)-X(k|k-1))………(8)

Kg(k)=p(k|k-1)/(p(k|k-1)+R)………(9)

p(k|k)=(1-Kg(k))p(k|k-1)………(10)

现在我们模拟一组测量值作为输入。假设房间的真实温度为25度,我模拟了200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。

为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和p(0|0)。他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。但是对于p,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。我选了X(0|0)=1度,p(0|0)=10。

该系统的真实温度为25度,图中用黑线表示。图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)

卡尔曼滤波器的工具函数

Kalman_filter

Kalman_smoother-implementstheRTSequations

Learn_kalman-findsmaximumlikelihoodestimatesoftheparametersusingEM

Sample_lds-generaterandomsamples

AR_to_SS-convertAutoRegressivemodeloforderktoStateSpaceform

SS_to_AR

Learn_AR-findsmaximumlikelihoodestimatesoftheparametersusingleastsquares

关于卡尔曼滤波器,电子元器件资料就介绍完了,您有什么想法可以联系小编。

  • UC3846控制芯片工作原理控制图 逆变焊机原理与用途
  • 数字万用表电阻档测试二极管正反向没有阻值(使用万用表测量二极管的正向电阻,为什么各档)
  • 学单片机需要学数电模电吗(学单片机要先学数电模电吗)
  • 电工怎么选择适合自己用的万用表(电工初学者买什么样的万用表好)
  • 单片机需要同时运行多个任务怎么办(单片机怎么同时执行多个任务)
  • 电机保护的方案取决于负载的机械特性
  • 绝缘电阻表正负搭接不复零位是怎么回事
  • 短路怎么用万用表查